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and the neglecting of term (A5) of . We can, in
fact, claim that the effects neglected will give a
contribution to the integral in Eq. (3. 2) not larger
than one part in 10% It must, however, be men-
tioned that if one wants to calculate the Pauli or spin
paramagnetic susceptibility using the same
Green’s-function decoupling method used in I, not
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only must one take into account term (A5) of I, but
one also has to improve upon the Hartree-Fock
decoupling (3. 3); in the contrary case one finds for
the spin susceptibility the Hartree-Fock result,
which implies* a ferromagnetic instability in the
electron gas at v, ~6 which has never been ob-
served.
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The methods used by Schotte and Schotte to study Mahan’s x-ray edge problem are extended

to the case of finite hole mass.

The singular behavior is expected to continue down to a dis-

tance Aw < 1/M§ above the absoprtion edge for attractive electron-hole interactions.

I. INTRODUCTION

When an infinitely heavy hole interacts with an
electron gas, the absorption and emission spectra
due, respectively, to the creation and annihilation
of the hole change their shape. In the absence of
electron-hole interactions, the spectra have the
usual threshold edge 6(w - w,;), but in the presence
of this interaction, the threshold acquires a
(w = wy)™¢ singularity (see Fig, 1).

This behavior was first surmised by Mahan, !
and can be calculated exactly using the path-inte-
gral approach due to Noziéres and De Dominicis, 2
or that due to Schotte and Schotte.?

If the hole mass is now allowed to be finite, the
problem becomes more complicated, and it no
longer seems possible to use the methods of Ref.
2. See Refs. 4-6 for some approaches to the
problem,

In this article we shall extend the method of
Ref, 3 to the case of finite hole mass, In this
method, the electron Fermi gas is replaced by the
Bose gas of its density oscillations; this allows us
to use the path-integral theory of a system inter-

acting with an ensemble of independent harmonic
oscillators, In the one-dimensional gas of S elec-
trons (the only ones that can interact with a sta-
tionary hole via a Dirac’s 6 function interaction),
Schotte and Schotte, following Tomonaga,’ define
density-wave operators

1
Pr= 2 Ay, Gy,
;r;z’; N e

E(ky) = E(ky) = kvg »

where N is the number of electrons and &, is the
momentum at the top of the conduction band. To
within a good approximation (see Tomonaga), the
p, obey boson commutation relations, and have the
dispersion law

E,=kvg ,

where v, is the Fermi velocity.

Schotte and Schotte also transform the electron
creation and annihilation operators appearing in
the problem into boson operators. If an electron
is created at the originattime #=0, and annihilated
there at time £,, these two fermion operators can
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FIG. 1. Absorption threshold behavior.

be replaced by a potential at the origin that acts
on the Bose gas between time 0 and ¢, [see their
Eq. (24)]. In proving this, the E -vs-k relation of
the electron gas is not used; the equivalence of
Fermi operators to a potential acting on the Bose
gas is thus independent of the E-k relation. Once
the problem has been transformed into a Bose-gas
one, we have the heavy hole interacting with a large
number of independent harmonic oscillators. We
now follow Feynman® and eliminate the harmonic
oscillators; these are replaced by a noninstanta-
neous self-interaction of the hole with itself. To
find the behavior of the hole under such a noninstan-
taneous interaction, we have to use path integrals
and integrate over the amplitudes of all possible
histories of the hole. This is feasible here, be-
cause the only possible history is the creation of
the hole and its subsequent annihilation, and only
the times at which these occur can be varied.

The amplitude of each path is e, where a is
a bilinear form in the disturbance applied to the
Bose gas.® For an infinite hole mass, Schotte and
Schotte find a «<1n¢, where ¢ is the time during
which the hole exists. The amplitude of the path
is then ¢!, which gives the singular spectrum of
Fig. 1. (The spectrum is found? by Fourier trans-
forming the time distribution of the path ampli-
tudes.)

In Sec. II, we shall extend the methods described
to the case of finite hole mass.

II. FINITE-MASS CASE

If the hole mass is finite, it is no longer possible
to deal only with S states, since the hole can move.
We can still transform the Fermi gas into a Bose
gas, i.e.,

h
Pr,g < ..Z . O%,B1 Oip,Bp -«

&y -kp=k
Ey-E3<E

This gas will not have a unique energy-momentum
relation as was the case in Sec. I it will have E and
k spread over a four-dimensional distribution, but
as we nowhere need a unique E - & relation in the
path-integral calculation, this nonuniqueness does
not matter: The amplitude of a path still has

the form e, with an a bilinear form in the per-
turbation acting on the boson. That is,

G. YUVAL
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FIG. 2. Typical excitation.
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a= [F(r,klr=7",t,t"YFr',t" d> d®r'dt at’,

where F(r,{) is the perturbation due to the heavy
hole (we shall consider the form of F later).

The kernel (7, t) can be obtained by Fourier
transforming its behavior in E-k space, which in
turn can be found from the boson spectrum. This
approach is expected to be straighforward but
tedious, However, we can use the following short-
cut approach,

The x-ray edge problem is an infrared-divergence
one, due to a large number of bosons of very low
energy. A low-energy boson is constructed as in
Fig. 2 with the electron and hole in it very close
to the Fermi sphere. Therefore, for the purpose
of computing the boson’s momentum, we can pro-
ject the two fermions onto the Fermi sphere as in
Fig. 3 and the error involved will be very small;
this is because, if we create an electron of mo-
mentum kg +€, and annihilate one of momentum
kg — €, with the two momenta forming anangle @, the
system’s momentum will be changed by 2k sin 3 @
+0(€; +€,).

I we perform this projection, which corresponds
to assuming V= «and changing the E-k spectrum
as in Fig, 3, we find that the spectrum of the
Fermions in E:E space decomposes into a direct
product f(E)g(k), where f(E)=const, g(k)=56(lk|
—kr). The spectra of the empty states and of the
occupied states decompose in the same way, with
f(E) < 6(E) and f(E), respectively. Since this de-
composition property is preserved under con-
volutions and Fourier transforms, k(r,?) has this
property too, that is &(7, )= q(») s (f).

Now Schotte and Schotte have already found s(¢),
because it also appears in the infinite-mass case.
They find s(f) behavs like 1/(1+ t2) = 78(¢), which
corresponds to the Fourier transform of |E|,1°

»

Changing the E-k spectrum.

FIG. 3.
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FIG. 4. Behavior of the potential.

For a square-wave disturbance, we have aclIn¢
by double integration, We cansee that this is the
correct form; the energy spectra of the electrons
created and of those annihilated are both step-
functions. The energy spectrum of the gains is
the convolution of these two spectra, and thus be-
haves like E sgn(E), with a sharp corner at E=0.
s(#) is obtained by summing up contributions from
the oscillators corresponding to all these gains,
and this amounts to a Fourier transform; because
of the sharp corner at E=0, wefinda¢-2behavior
for large times.

The three-space function g(») is the Fourier trans-
form of the momentum spectrum of the bosons,
which in turn is the convolution of the momentum
spectra of the electron and of the holes. But both
these spectra are assumed to be on the Fermi sur-
face (this is the vp= « approximation), and thus we
find

q(¥) < (sin? kpr) /72 .

The other result of Schotte and Schotte which we
want to extend to the finite-mass case is their
transformation turnirng the fermion creation and
annihilation operators into boson operators. This
result depends only on the commutation relation
between the fermi operators and k., and the
Hamiltonian nowhere appears in its derivation.
Therefore, to extend it from a pair of operators
at the origin—for which Schotte and Schotte have
already shown the equivalence—to the general
case we only need a Gallilean transformation,
Following such a transformation (so as to make
both operators act at the same place), we replace
the fermion operators by boson operators as in
Ref. 3, and transform back to the original co-
ordinate system. The potential that replaces
the pair of Fermi operators is on the straight line
in E-K space between these operators in one frame,
and it is therefore on this straight line in the other
Gallilean frame also (see Fig. 4).

The finite~-mass x-ray edge problem has at this
point been reduced to a path-integral problem for a
hole moving through a Bose gas, through which a

potential due to the creation and annihilation opera-
tors moves uniformly in a straight line (see Fig.

5). If the scattering phase shift of the hole is 5,

the disturbance acting on the Bose gas at the hole
site will be proportional to 6, The disturbance
along the straight line CA will be independent of

8; it will remain even when 6=0, when the amplitude
of the path will be the Green’s function for a hole
and electron moving independently.

In the sum of those two distrubances in the Bose
gas a is bilinear. If 5 is small, we shall ignore the
term which contains 6 in second order, !! and make
a(0)=ay+a,6, Under this approximation, the heavy
hole does not interact with its own motion any
longer; it only interacts with the potential on the
straight-line segment CA. If we once assume this,
we find that, for a given segment CA, the path-
integral problem becomes equivalent to a time-
dependent Schrédinger equation for the heavy hole
in a potential due to the force moving along CA.
This potential is found by taking this latter force
and convoluting with 2(»,#). We find that the heavy
hole moves in a potential of the form (sin? k%) /72,
the strength of which varies as 1/(t=#)+1/(t, - t)
where ¢ and ¢, are the times of creation (C) and
annihilation (A), respectively. If 6 <0 (anattractive
electron-hole interaction), this potential is attrac-
tive,

If the hole mass is M, it will be tightly bound by
the potential due to CA for a time proportional to
M6 at the beginning and end of its path,? Therefore,
for times up to a certain limit which is proportional
to M6, the path-integral will behave as in the in-
finite-mass case (out 6 will be renormalized), If
the time interval between C and A is larger, the
potential on the hole will no longer affect it strongly
(at least to first order in 6), and we are back to an
independent-particle problem. Performing a Fou-
rier transform, we then expect the spectrum to
maintain its singular behavior down to a frequency
Awcc1/M6 above the threshold, and then revert to
a simple step-function behavior below this frequency.

If the electron-hole interaction is repulsive, so
will the interaction be between the line CA and the
hole path, In this case, the singular behavior will
already disappear for very-short-time intervals.

FIG. 5. Relevant paths.
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The method used here does not assume indepen-
dence between successive recoils of the hole; that

G. YUVAL 4

assumption does seem to appear in the methods of
Miiller-Hartmann et al.'® and of Doniach.
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Measurements of the electron energy distributions of photoemitted electrons from crystalline
and bulk liquid samples of indium show structure which can be related to the occupied density
of states. The distributions from the crystalline sample show two major peaks: a strong one
just below the Fermi level and a weaker one about 4.5 eV below the Fermi level. Similar
structure in the distributions from the liquid sample suggest that electron energy levels for
indium are determined primarily from short-range interactions. Two model calculations
based on direct transitions and nondirect transitions can each predict the observed structure
with reasonable accuracy. In either calculation, structure in the energy distributions can be
traced to similar structure in the density of valence states.

I. INTRODUCTION

The initial motivation of this work was to investi-
gate the importance of long-range order in a nearly
free-electron metal by studying photoemission from
crystalline and amorphous indium. Although we
did not anticipate it at the onset of the work, it has
become evident that the photoemission from crys-
talline indium is itself not unambiguously explained
in terms of a single simple model. Rather, it has
proved necessary to investigate direct! and non-
direct? optical excitation models and to consider
the possibility of surface excitation of plasmon ef-
fects.® However, it appears that independent of the
detailed model, it is possible to associate structure
in the photoemission energy distribution curves
(EDC) from crystalline indium with structure in the
density of states. This allows for rather direct

comparison between the photoemission results
from crystalline and liquid indium.

As one might expect, we find that indium has an
electronic structure that is relatively free-elec-
tron-like. Its optical properties® are quite similar
to those of aluminum. The measurements we pre-
sent here indicate that the energy bands of indium
are distorted somewhat more than those of alumi-
num from the “pure” free-electron case. Structure
in the electron energy distributions suggest stronger
interaction of the electron with the lattice potential.

II. EXPERIMENTAL METHODS
A. Measurements

The two experimental quantities of interest are
the quantum yield and the photoelectron energy
distribution. The quantum yield is defined as the



